DRAFT

Fire Regime Condition Class (FRCC) Interagency Handbook Reference Conditions

Modeler: Bruce Davenport Date: 5/28/04 PNVG Code: OKHK3

Potential Natural Vegetation Group: Western Mesophytic Forest

Geographic Area: Occurring under suitable conditions in areas corresponding to Kuchler types 100 and 111; primarily in the Interior Low Plateau, southern Central Lowland, Ozark Plateaus, and Ouachita physiographic provinces, but also in the loess hills of the northern Coastal Plain. Includes parts of Alabama, Kentucky, Tennessee, Indiana, Illinois, Ohio, Missouri, Arkansas, Oklahoma, and Mississippi

Description: Found on a wide range of topographic positions, including drier sites than mixed mesophytic forests, distribution is nonetheless influenced by local conditions affecting moisture and fertility. Generally, from east to west, that distribution becomes "more and more limited in extent and more dependent on very favorable habitat conditions" (Braun, 1950). Typically oakdominated, western mesophytic forests may still include almost any of the species associated with mixed mesophytic communities, except yellow buckeye.

Fire Regime Description: Fire Regime Group III, infrequent, primarily low intensity surface fire with rare mosaic or replacement fire. Mean fire return interval (MFI) is about 40 years with wide year-to-year and within-type variation related to moisture cycles, degree of sheltering, and proximity to more fire-prone types. Anthropogenic fire considered and further contributes to within-type MFI variation.

Vegetation Type and Structure

Class*	Percent of	Description
	Landscape	
A: post replacement	10	0-15 years. Sprouts, seedlings, saplings, primarily of major
		overstory species in gaps created by wind, lightning,
		insect/disease, and less frequently, fire. Intolerant species (e.g.,
_		PRSE, LITU) confined to multiple-tree gaps.
B : mid-seral closed	30	15–79 years. Dominated by young to early mature canopy with
		some obligate mid and understory species. Set B/C break at
		90%. Open/closed condition a function of understory/midstory
		development more than canopy closure. At least two layers in closed dependent on age.
C: mid- seral open	10	15-79 years. Same overstory as B but without well-developed
O. Illiu- Serai open	10	midstory and with a generally low or minimal understory.
D: late- seral open	30	80-200+ years. Early to late mature canopy that may exceed
		100 feet in height. Dominant overstory species variable by
		location and stand history. D/E break 90%. Open/closed more
		dependent on presence or absence of multi-layered vertical
		structure. Closed with single-layer main canopy without
		continuous midstory or robust understory.
E: late- seral closed	20	80-200+ years. Same canopy as D with well developed lower
		layers containing canopy species and often others confined at
T - 4 - 1	400	those levels.
Total	100	

^{*}Formal codes for classes A-E are: AESP, BMSC, CMSO, DLSO, and ELSC, respectively.

Fire Frequency and Severity

	Fire Frequency	Probability	Percent,	Description
Fire Severity	(yrs)	-	All Fires	
Replacement Fire	475	.002	8	
Non-Replacement Fire	43	.023	92	
All Fire Frequency*	40	.025	100	

^{*}All Fire Probability = sum of replacement fire and non-replacement fire probabilities. All Fire Frequency = inverse of all fire probability (previous calculation).

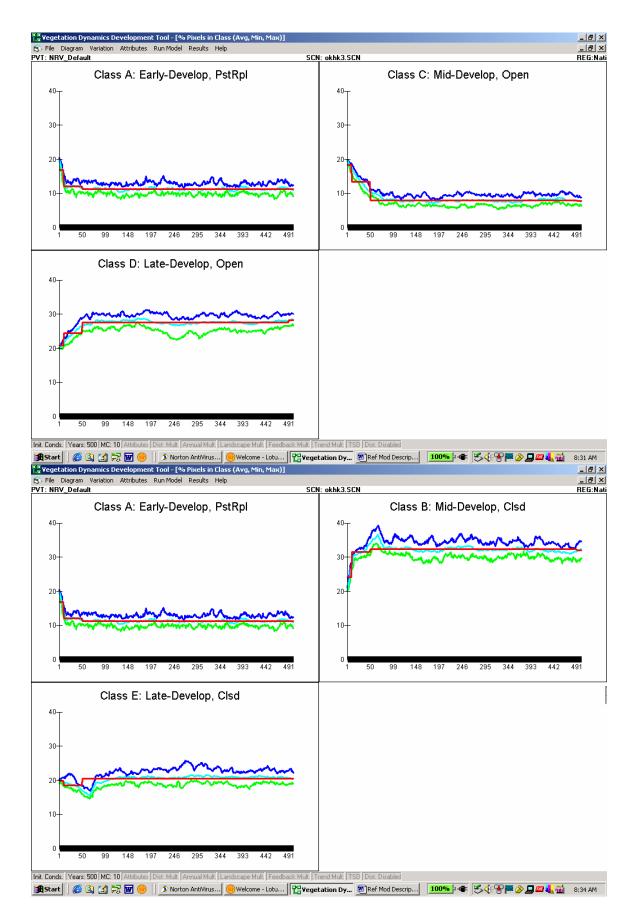
References

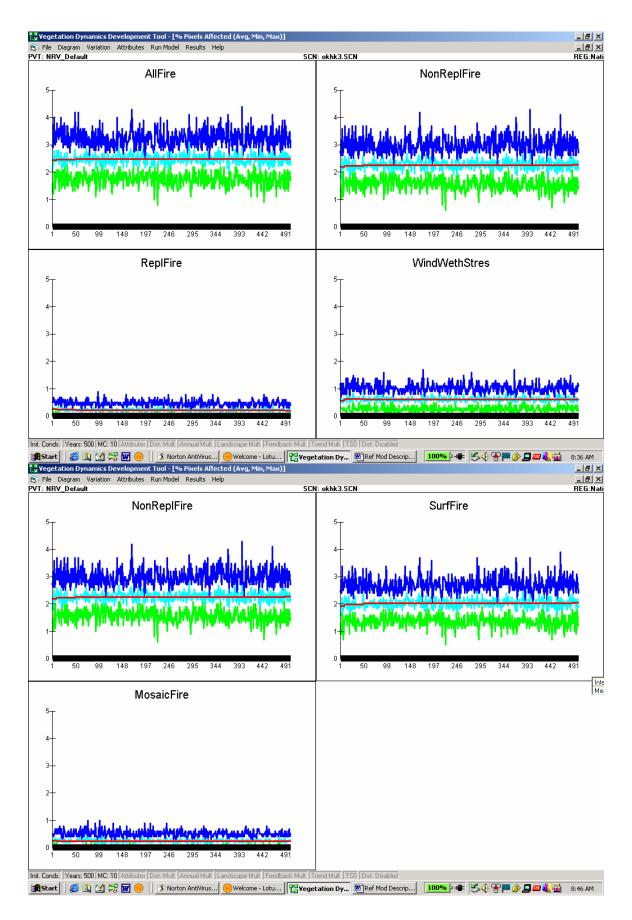
Braun, E.L. 1950. Deciduous Forests of Eastern North America. Free Press, New York. 596 p.

Brown, James K.; Smith, Jane Kapler, eds. 2000. Wildland fire in ecosystems: effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 257 p.

Bryant, W.S., W.C. McComb, J.S. Fralish. 1993. Oak-hickory forests (western mesophytic/oak-hickory forests). P. 143-201 *in* Biodiversity of the Southeastern United States: upland terrestrial communities, Martin, W.H., S.G. Boyce, and A.C. Echternacht (eds.). Wiley, New York. 373 p.

Buckner, E.R. 1989. Evolution of forest types in the Southeast. *In* Proceedings: Pine-hardwood mixtures: a symposium on management and ecology of the type. Waldrop, T.A. (ed.) Gen. Tech. Rep. SE-58. Atlanta, GA: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 271 p.


Greenberg, C.H., D.E. McLeod, and D.L. Loftis. 1997. An old-growth definition for western mesophytic and mixed mesophytic forests. Gen. Tech. Rep. SRS-16. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 16 p.


Hinkle, C.R., W.C. McComb, J.M. Safley, Jr., and P.A. Schmalzer. 1993. Mixed mesophytic forests. P. 203-253 *in* Biodiversity of the Southeastern United States: upland terrestrial communities, Martin, W.H., S.G. Boyce, and A.C. Echternacht (eds.). Wiley, New York. 373 p.

Schmidt, Kirsten M, Menakis, James P., Hardy, Colin C., Hann, Wendel J., Bunnell, David L. 2002. Development of coarse-scale spatial data for wildland fire and fuel management. Gen. Tech. Rep. RMRS-GTR-87. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 41 p. + CD.

U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2002, December). Fire Effects Information System, [Online]. Available: http://www.fs.fed.us/database/feis/.

VDDT File Documentation:

